








language (Step 1). The language provides enough flexi-
bility for the kernel to be metaprogrammed with several
orthogonal optimizations. From this set of optimiza-
tions, possible languages targets, and compilation
options, the user can design an optimization space to
explore. This optimization space can contain rules to
remove infeasible candidates. BOAST provides the
mechanisms to specify those optimization spaces and
enforce the users rules.

Once this optimization space is designed, the user
selects an optimization strategy, brute force and genetic
algorithms are provided by BOAST, or can design his
own. BOAST will then evaluate the different candidates
generated by the optimization program. The candi-
date’s parameters define the output source code that
will be generated by BOAST (Step 2). The resulting
code source is then built according to the specified com-
piler and options (Step 3). The kernel can be bench-
marked and tested for nonregression. Based on the
results, other optimizations can be selected (Step 4).
The process can be repeated until a good candidate is
found on the target platform. The resulting kernel is
then added to the program (Step 5).

Of course, this workflow is not the only possible use
of BOAST. Especially, during the kernel description
phase the user can use the BOAST framework to test
his existing optimizations and analyze the results in
order to design new optimizations. He can possibly do
it using external tools.

In order to achieve those results, three aspects should
be considered: code description, code generation, and
kernel execution runtime.

4.1. Kernel description language

Usually, computing kernels are hotspots of an HPC
application, and they take most of the time based on
loop nests. A lot of efforts are dedicated to their tuning
and the obtained result is often quite different from the
original procedure. Several transformations can be
applied to such kernels. And those optimizations are
often applied manually as compiler may fail to recog-
nize the opportunity.

There are many different loop optimization tech-
niques (Wolf and Lam, 1991). We can cite loop skewing
(Wolfe, 1986; derives nested loops wavefronts) or loop
interchange (Allen and Kennedy, 1984; loop variables
change places). The importance of correct loop imbri-
cation on Basic Linear Algebra Subprograms (BLAS;
Lawson et al., 1979) operations is studied by Soliman
(2009), and shows performance increase of a factor up
to 5 when using correct loop imbrication. The impor-
tance of code transformation is stressed in Ye et al.
(2012), where a selection of GPU kernels are ported to
central processing unit (CPU) and optimized.

BOAST kernel description language should be able
to express all these optimizations. This gives us a set of
constraints to implement in the language:

� Arbitrary number of variables have to be created
and manipulated (types, attributes, etc.).

� Procedures have to be abstracted (reunite Fortran
and C like languages, attributes, etc.).

� Functions must be available.
� Variables, constants and functions should be able

to be composed in complex expressions.
� Basic control structures (for, while, if/else, etc.)

have to be abstracted.
� Powerful array management features (allowing sev-

eral dimensions, transformations, indexing, etc.).

In order to manipulate those abstractions, we want
to have a syntax similar to what programmers use. For
instance, commonly used operators have to be available
and behave as expected. It must also be possible to dif-
ferentiate an action on an abstraction in the context of
an expression and in the context of the management of
this expression. c= a+ b, an expression that affects
the results of a+ b to c is not equal to c a+ b,
which saves the expression a+ b to a variable c. This is
why an embedded domain-specific language (EDSL)
approach was selected (Hudak, 1996). This feature
allows for the coexistence of two languages: the host
language and the DSL. In our case, DSL allows the
description of the kernel (c= a+ b), while the host lan-
guage provides the metaprogramming of the kernel
(c a+ b). Operator overloading of the host language
will provide the familiar syntax programmers are accus-
tomed to.

It was also important to have our constructs like for
loops to have a syntax approaching those commonly
found in programming languages. To this end, we
needed a language which could seamlessly pass a block
of code to a function. Ruby (Matsumoto and Ishituka,
2002) is one such language. It has deep introspection
capabilities as well. This is the main reason why it was
selected for BOAST.

One of the added advantages of using a high-level
scripting language like Ruby as the host language is its
interfacing capabilities, providing an easy way to use
the libraries needed during the development of the
framework.

4.1.1. BOAST keywords. In order to clearly differentiate
what is going to be generated from what is related to
manipulations in the host language, four keywords were
defined. They are decl, pr, opn, and close. As the lan-
guage is an EDSL, these four keywords are methods in
the BOAST namespace. Sample usage of these key-
words will be found in the next figures.
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The decl method is used to declare variables or pro-
cedures and functions. The pr method calls the public
prmethod of objects it is called on. Each BOAST object
is responsible for printing itself correctly depending on
the BOAST configuration at the time the print public
method is called. Calling directly the pr method of a
BOAST object yields the same result. The opn method
can be used to print the beginning of a control structure
without an associated code block. The close method is
the counterpart to the opn method. It is used to close a
control structure without an associated code block.

4.1.2. BOAST abstractions. BOAST defines several classes
that are used to represent the structure of the code.
These classes can be sorted in two groups, algebraic
related and control flow related.

4.1.3. Algebra. The first and most fundamental abstrac-
tion is named Variable. Variables have a type, a name,
and a set of named attributes. The existing attributes
are mainly inspired from Fortran. Those attributes are
not limited and can be arbitrarily enriched, allowing a
lot of flexibility in Variable management.

The second abstraction is named Expression. It com-
bines variables into algebraic or logic expressions. Most
of the classical operators are overloaded for those two
abstractions and thus the syntax of the expressions is
rather straightforward. The exception is the assignment
operator as it is important to differentiate between
assigning an Expression or a Variable in the Ruby

context and the assignment operator in the context of a
BOAST Expression. Thus, the assignment in a BOAST
Expression is represented as the === operator, while
the classical assignment is kept as the = operator.
Function calls (FuncCall) are also abstracted and can
be used in Expressions.

Figure 2 shows some basic usage of both Variables
and Expressions as well as the pr and decl keywords.
For clarity, we stayed out of BOAST namespace so
BOAST-related class and methods are prefixed with
BOAST::. Listing 6 shows the BOAST code that pro-
duces the Fortran (Listing 7) and C (Listing 8) output.
First, we define two variables i and k (note that k is 64

bit integer). The third variable named l is a one-dimen-
sional local array of length 27, it is indexed in the range
�5 to 21. All those Variables are affected to Ruby vari-
ables of the corresponding name.

Listing 6. BOAST code.
Listing 7. Fortran output.
Listing 8. C output.

On Line 4, we declare those three variables. Variable
i is then assigned the value 5. On Line 6 the j Ruby vari-
able is used to store the BOAST expression i+ 5. This
variable will be used transparently through the rest of
the program.

On Line 8, we use variable k to index into array l
using the bracket operator. Would the array be multidi-
mensional, the index would be comma separated, simi-
lar to Fortran notation.

Figure 2. BOAST code snippet for variables and expressions.
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On the last line, a call to the sin function is made
through the creation of a FuncCall object. The possibil-
ity to use this method is declared using the register_-
funccall method.

4.1.4. Control structures. The classical control structures
are implemented. If, For, While, Case are abstractions
in BOAST matching the behavior of corresponding
control structures in other languages. An exception is
the For in BOAST that matches more closely the For in
Fortran than the one in C.

Figure 3 shows some basic usages of the control
structures. The example shows a C macro or function
that behaves similarly to the Fortran modulo intrinsic.
The sample script (inefficiently) computes and stores in
j the number of multiples of 7 in the 0–100 range. It
uses the For and If control structures. A Ruby block is
passed to each of those constructs. This block is evalu-
ated at the time the construct is printed. If several such
constructs are needed (in an if elsif else case, for
instance), they can be explicitly passed as parameters
using the lambda Ruby keyword.

Listing 9. BOAST code.
Listing 10. Fortran output.
Listing 11. C output.

The last control structure is Procedure. It describes
either procedures or functions. Code in Figure 4 pre-
sents the use of this abstraction. It illustrates the signa-
ture of a real kernel from BigDFT. This kernel uses an
input array x and an output array y, both composed of
double precision numbers. Those arrays have two
dimensions which depend on input variables n and

ndat. We can see here the use of the opn and close key-
words that are used to print a control structure without
an associated Ruby block. This time we placed our-
selves inside the BOAST namespace.

Listing 12. BOAST code.
Listing 13. Fortran output.
Listing 14. C output.

The generated outputs in Fortran (Listing 13) and C
(Listing 14) show the difference in metainformation
that is kept between both versions.

4.2. BOAST runtime

In the previous section, we presented the BOAST’s lan-
guage. This allows us to describe procedures and

Figure 3. BOAST code snippet for control structures.

Figure 4. BOAST code snippet for procedure.
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functions and to metaprogram them using Ruby. Each
version has to be compiled, linked, and executed to
assess its performance in order to find the best version
of a computing kernel. This can be very time-
consuming if this process cannot be automated. By
enabling more versions for evaluation, the automation
will bring improved portability, better performance,
and in the end will improve the productivity of the
developer.

In this section, we will present the different aspects
of BOAST runtime that allow this automation. Those
aspects are multitarget language generation (perfor-
mance, portability), kernel compilation (productivity,
performance), kernel execution (productivity, perfor-
mance), and last, kernel tracer, dumper and replay for
nonregression tests (productivity).

4.2.1. Multitarget language generation. Language availabil-
ity and performance varies between platforms. It is thus
important to express computing kernels in different
languages, based on the availability and their respective
merits on the target platform. Some languages have
additional features, such as languages that target GPUs
(OpenCL, CUDA), or languages that support multi-
threading paradigms (OpenMP). The developer should
be given tools to determine what kind of language is
currently used in order to be able to use those addi-
tional features.

Similarly, the target language must be changed with
ease in order to compare different alternatives. Two
methods are dedicated to this task: set_lang and
get_lang. The target language can also be set through
an environment variable before launching BOAST,
allowing for easy command line scripting.

4.2.2. Compilation. Compilation of the generated kernels
must also be very flexible because HPC application devel-
opers may encounter platforms with very diverse compila-
tion environments. Proprietary and dedicated compilers
are common on HPC infrastructures. Thus, BOAST build
system exhibits similar behavior to common build systems.
Compilers and their compile/build options can be speci-
fied at several places. The list by increasing order of prece-
dence includes: BOAST configuration file, environment
variables, and at kernel build time.

This way the framework to test different compiler
optimizations is completely available and performance
study can include both kernel-related parameters and
compilation-related parameters. This behavior is con-
tained in the CKernel class of BOAST. When instan-
tiating this class, a BOAST Procedure representing the
entry point of the kernel is specified.

4.2.3. Execution. The next logical step is to benchmark
the built kernel. BOAST offers a simple way to run a
kernel that was successfully built without the need to

fork another process. A built BOAST CKernel exposes
a run method that accepts arguments corresponding to
the BOAST Procedure used to instantiate the kernel.
Arrays must be instances of NArray which are numeri-
cal arrays that use C arrays underneath.

Arrays which correspond to output parameters will
be modified during the execution of the kernel so results
can be checked. This allows for easy nonregression test-
ing. The run method also returns information (and
result for kernels that are functions as well as output
scalars) about the run. For instance, one such informa-
tion includes the runtime of the kernel and it is obtained
using the system-wide real-time clock. Other probes can
be inserted at compiletime, if needed. BOAST also sup-
ports PAPI (Mucci et al., 1999) to capture hardware
performance counters during each kernel execution.

4.2.4. Kernel replay. The nonregression methodology
presented before is viable provided input data can be
generated at run time. For instance, in the case of the
Laplace kernel, generating an input image and the cor-
responding reference output image, using a reference
implementation, is easy. Unfortunately, it is not always
possible, because some applications have complex data
patterns that are difficult to synthesize without running
the full application. Thus, BOAST offers a way to load
binary data from the file system and use them as inputs
of a kernel. Outputs can also be checked against those
binary data, thus enabling (almost) data oblivious non-
regression testing.

In order to use this methodology, one has to be able
to trace an application to get input data. Such a tracer,
dedicated to CUDA and OpenCL, will be presented in
the next subsection.

4.3. Nonregression testing using trace debugging

Debugging applications running on GPU environments
is well recognized as a hard and time-consuming activ-
ity. In complement with BOAST, we designed a trace-
based debugging tool that simplifies this porting opera-
tion. The tool relies on BOAST support of multitarget
code generation (Section 4.2.1), used to validate an
application from one GPU-programming framework
to another or between different implementations using
the same programming model. A casestudy of the port
of a CUDA application to OpenCL is presented in
Section 5.3.

Listing 15. GPUTrace sample trace.

The idea behind this tool is based on the assumption
that the different GPU ports of the code should per-
form the very same operations, at least at the logical
level (the APIs will have implementation differences,
but they should offer nonetheless same functionalities).
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The usage of BOAST framework sustains this assump-
tion, as both sets of kernels should be generated from
the same source code.

Hence, the verification and validation of the new
port can be narrowed down to asserting that both codes
apply the same operations on the GPU. And the debug-
ging part will consist in understanding what diverges.
To that purpose, we developed GPUTrace, inspired
bystrace andltrace tools: GPUTrace dynamically pre-
loads a library between the application and the GPU
library, and collects the function name, execution range,
and argument values (input and output) of the relevant
function calls. These information are traced in a unified
format for all the APIs. This is a custom trace format.
Listing 15 presents a sample output generated during
SPECFEM3D tracing.

However, in contrast withstrace andltrace,
GPUTrace has to be state-full. Indeed, most of API
parameters are handles to opaque types. So, in order to
generate meaningful traces,GPUTrace gathers informa-
tion about these objects at creation time (handle value,
buffer creation size and attributes, kernel name and
prototype,etc.) and re-injects this information when the
objects used. A state-less implementation of GPUTrace
would highly rely on the GPU libraries introspection
capabilities, which seem not possible at the moment.

Once two call traces have been generated by GPU
Trace, the user can compare them with a graphicaldiff
tool, and spot the different porting mistakes: two para-
meters reversed, an offset incorrectly applied,etc.

By default,GPUTrace only prints a unique iden-
tifier (the creation index) for the memory buffers.
Additionally,GPUTrace supports several modifier flags.
One flag can be activated to append the first bits of the
buffer to the trace, printed in the right format, for visual
inspection. Another flag can be set to dump the whole
content of the buffer into a file, for a full inspection.

This last option is also useful to generate replay buf-
fers for BOAST kernel execution. With a set of filters
based on kernel names and execution counters, develo-
pers can precisely select which kernel execution para-
meters should be dumped, for further reuse as real-case
benchmarks and nonregression testing.

5. BOASTuse cases

In this section, we will present the benefits of using
BOAST on the Laplace motivating example as well as
on two scientific applications. The first one, BigDFT
(Genovese et al., 2008), uses BOAST in order to develop
new functionalities with performance portability in
mind. The second one, SPECFEM3D (Komatitsch,
2011), uses BOAST to factorize OpenCL and CUDA
development, while having robust nonregression tests.

5.1. Laplace filter kernel

Section 3 presented the Laplace motivating example.
From this section, we know that a number of optimiza-
tions can have an impact on the performance of the ker-
nel on the Mali architecture. But, what is the impact in
other architectures? And, are there any additional opti-
mizations that can impact the performance?

5.1.1. Optimization space. The list of already identified
optimizations are vectorization, intermediary data type,
number of pixels processed, and synthesizing loads. To
create our generic implementation, we decided to work
at the component level rather than the pixel level. This
approach leads to more flexibility and genericity when
applying optimizations. We also decided to study the
impact of another parameter which is the number of
components to process on the column direction. This
leads to being able to process tiles instead of only rows.

Here are the parameters we finally selected for our
kernel optimization and their possible values:

� x_component_number: a positive integer
� y_component_number: a positive integer
� vector_length: 1, 2, 4, 8 or 16
� temporary_size: 2 or 4
� synthesize_loads: true or false
� vector_recompute: true or false

The last parameter is used when x_component_num-
ber is not divisible by vector_length. Two solutions are
possible then, divide the remainder of the division in
vectors of smaller sizes (vector_recompute = false) or
load more data and compute useless values in vectors
of the specified size (vector_recompute= true). This last
option mimics the behavior of the ARM implementa-
tion, although when working at the component level it
may not be a valuable thing to try.

Listing 15. GPUTrace sample trace.
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5.1.2. Performance results. Table 1 shows the best results
obtained by ARM on different images compared to the
naive implementation and to the best version BOAST
found. It shows that the generated version systemati-
cally outperforms the hand optimized version. As far as
the optimization options are concerned, the results are
disappointing: The same kernel configuration is the best
for all image sizes. This kernel uses x_component_num-
ber = 16, y_component_number = 1, vector_length =
16, temporary_size = 2 and synthesize_loads = false.
vector_recompute because x_component_number ==
vector_length. Those results show that, when working
on full vectors, synthesizing the loads is harmful to per-
formance and the programmer is better of trusting the
cache to load each vector in one cycle without compro-
mising the bandwidth. The results shown here are the
best of four runs for each configuration.

But what if we run our benchmark on other architec-
tures? Table 2 shows the results obtained when running
our BOAST implementation on other architectures.
The chosen architectures include an Intel i7-2760QM
CPU (Sandy Bridge architecture) that supports
OpenCL 1.2 and a system with an NVIDIA gtx680
GPU that supports OpenCL 1.1. We see that the per-
formance ratio between the different architectures is
stable across image sizes.

The optimization parameters selected are not the
same for those architectures. Indeed, the Intel CPU
favors kernels that have the parameters, x_compo-
nent_number = 16, vector_length = 8, temporary_size
= 2, and synthesize_loads = false. Once again vector_-
recompute does not apply. y_component_number varies
from 4 to 2 when image size increases, thus decreasing
task granularity as the global work size increases. This
result is interesting because its unexpected nature
strongly backs the use of autotuning. The NVIDIA

GPU favors processing square tiles: x_component_num-
ber = 4, y_component_number = 4, vector_length = 4,
temporary_size = 2, and synthesize_loads = false.
Once more, vector_recompute has no meaning.

5.1.3. Laplace conclusion. In this subsection, we have
shown the interest of BOAST in optimizing a well-
known algorithm across different architectures. Chosen
optimization combinations are highly dependent on the
target architecture. But BOAST simplifies and speeds
up the identification of the correct combination at the
cost of metaprogramming. In the next subsections, we
will show that our methodology also applies to real
applications.

5.2. Creating an autotuned convolution library for
BigDFT using BOAST

In 2005, the EU FP6-STREP-NEST BigDFT
(Genovese et al., 2008) project funded a consortium of
four European laboratories (L_Sim,CEA Grenoble;
Basel University, Switzerland; Louvain-la-Neuve
University, Belgium, and Kiel University, Germany),
with the aim of developing a novel approach for DFT
calculations based on Daubechies wavelets. Rather
than simply building a DFT code from scratch, the
objective of this three-year project was to test the
potential benefit of a new formalism in the context of
electronic structure calculations.

As a matter of fact, Daubechies wavelets exhibit a
set of properties which make them ideal for a precise
and optimized DFT approach. In particular, their sys-
tematicity allows one to provide a reliable basis set for
high-precision results, whereas their locality (both in
real and reciprocal space) is highly desired to improve
the efficiency and the flexibility of the processing.

Table 1. Best performance of ARM Laplace kernel.

Image size Naive (s) Best (s) Accel. BOAST (s) Accel.

768 3 432 0.0107 0.00669 31.6 0.000639 316.7
256031600 0.0850 0.0137 36.2 0.00687 312.4
204832048 0.0865 0.0149 35.8 0.00715 312.1
576033240 0.382 0.0449 38.5 0.0325 311.8
768034320 0.680 0.0747 39.1 0.0581 311.7

Table 2. Best performance of Laplace kernel on several architectures.

Image size ARM Intel Ratio NV Ratio

7683432 0.000639 0.000222 32.9 0.0000715 38.9
256031600 0.00687 0.00222 33.1 0.000782 38.8
204832048 0.00715 0.00226 33.2 0.000799 38.9
576033240 0.0325 0.0108 33.0 0.00351 39.3
768034320 0.0581 0.0192 33.0 0.00623 39.3
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Indeed, a localized basis set allows one to optimize the
number of degrees of freedom for a required accuracy
(Genovese et al., 2008), which is highly desirable given
the complexity and inhomogeneity of the systems under
investigation nowadays.

Despite that the application is mainly written in
Fortran (360 kLOC of Fortran), it currently also
includes 70 kLOC of C languages, accounting for more
than 50% of the code base. It is a parallel application
based on the standards MPI (2012) and OpenMP
(Dagum and Menon, 1998). It also supports CUDA
(NVIDIA, 2011) and OpenCL. In the recent years, this
code has been used for many scientific applications,
and its development and user consortium is continu-
ously growing. Massively parallel computations are
routinely executed with the BigDFT code, either in
homogeneous or hybrid architectures. In 2009, the
French Bull-Fourier award was attributed for the
implementation of the hybrid version of BigDFT
(Genovese et al., 2009).

5.2.1. BigDFT. In the Kohn-Sham formulation of
Density Functional Theory (DFT), the electrons are
associated to wavefunctions (orbitals), which are repre-
sented by arrays of floating point numbers. In wavelets
formalism, the operators are written via convolutions
with short, separable filters. The detailed description of
how these operations are defined is beyond the scope of
this article and can be found in the BigDFT reference
paper (Genovese et al., 2008). Convolutions are basic
operations of lots of scientific application codes, for
example, finite differences approaches, which are univer-
sally used in computational physics.

The CPU convolutions of BigDFT have thus been
thoroughly optimized. In a recent paper (Videau et al.,
2013), the optimization of the CPU convolutions of
BigDFT has been extensively considered. One example
of a specific convolution, called MagicFilter (Genovese
et al., 2010), can be seen in Listing 16. It applies a filter
filt to the data set in and then stores the result in the
data set out with a transposition (Goedecker 1993).

Listing 16. MagicFilter.

As we can see, there are three nested loops working
on arrays whose sizes vary. Various optimizations can
be applied to this treatment and may focus on the loop
structure, as well as on the size of the data.

5.2.2.A generic convolution library. The number of convolu-
tion kernels needed in BigDFT has been continuously
growing in the recent years. Various boundary condi-
tions and functionalities have been added, making the
BigDFT more and more powerful in terms of scientific
applications. However, the cost of maintenance and
development of the convolutions is always a delicate

point to be considered while including a new function-
ality. The convolution patterns are usually rather simi-
lar, leading to code duplication and difficulties in code
maintainability.

Therefore, it appears very interesting to benefit from
an automatic tool to drive the implementation and the
generation of new convolutions. This would lead to an
optimized code, adapted to different computing plat-
forms, that is optimally factorized. In addition to this
point, the help of such code generator is also important
to build new science: The cost of implementing new
convolutions would become so little that other func-
tionalities (e.g., the generalization of the BigDFT con-
volutions to Neumann boundary conditions or the
usage of wavelet-on-the-interval basis) can be added
with limited manpower.

For these reasons, a convolution library has been
engineered with the help of BOAST. The detailed API
of the library is beyond the scope of this paper. The
spirit is similar to BLAS-LAPACK API, where low-
level operations are scheduled and called from high-
level operations. The basic blocks will be composed of
unidimensional wavelet transforms and convolutions
applied to multidimensional arrays. Combining those
blocks will yield multidimensional transforms.

Each of the building blocks of these convolution
libraries is optimally tuned by BOAST by choosing the
sources providing the optimal kernel for the chosen
computing platform. The sources of these kernels are
then collected and compiled to meet the API of the
library. A library written in this way might have an
impact going largely beyond the community of BigDFT
developers.

The interest in having a robust and optimally tuned
library in this scientific field is therefore evident.
Techniques are under investigation to also provide end
users with fine-tuned binaries rather than the source
codes, such that more aggressive interprocedural opti-
mization can be performed. Indeed, BOAST finds the
optimal source code for a given kernel and compiler
configuration but one could imagine using binary opti-
mizer to the compiled binaries. Those optimizers could
be coupled to BOAST and the output of the process
would be the final binary rather than the source code.

Listing 16. MagicFilter.
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This experience therefore would be a first step toward
the release of a tunable optimized convolution library
oriented to computational physics communities.

5.2.3.Performance report. Several kernels have already
been implemented in BOAST for the convolution
library. Figure 5 shows the performance of the wavelet
transform operation as a factor of the unrolling length
of the outer loop, the language used to implement it as
well as the activation or not of the OpenMP paralleliza-
tion. Results are given as a speedup compared to the
sequential hand tuned implementation that can be
found in BigDFT. These tests were run on the Intel
Xeon X5550 that was used to hand optimize the code.

We can see that this function is better optimized
using Fortran and small unrolling factors. In the hand
optimized version, the unrolling factor was chosen
much too high (a factor of 12 was used). This factor
might have been optimal at the time the procedure was
optimized (compiler version changed in the meantime)
but since then the environment changed. Other optimi-
zations have also been incorporated in the BOAST
sources, like the systematic inner loop unrolling, and
those could also help increase performance while limit-
ing the interest of the outer loop unrolling.

Nonetheless, what is interesting from the physicist
point of view is that the generated source will give its
better performance on a whole range of architectures/
compilers combinations than that of the hand tuned
code.

5.3. Porting SPECFEM3D application kernels: From
CUDA to OpenCL using BOAST

In this last subsection, we present an alternative use
case of the BOAST framework, focused on portability.
As part of the Mont-Blanc project, we ported a scien-
tific application so that it could be use to benchmark
the Mont-Blanc HPC cluster. It was composed of 40
complex and hand-tuned CUDA kernels, that we
ported to the OpenCL framework. This scenario also

highlights the factorization and maintainability
improvements of the BOAST framework, as we
obtained a single BOAST implementation of the kernels
(instead of two, CUDA and OpenCL). This version of
the code is still used and updated in the upstream
project.

The challenges we faced in this case study were more
related to the complexity of the scientific application
and its kernels than to the BOAST framework.

5.3.1. Specfem3D. SPECFEM3D GLOBE1 is a free seis-
mic wave propagation simulator. It simulates seismic
wave propagation at the local or regional scale based
upon spectral element method, with very good accuracy
and convergence properties. It is a reference application
for supercomputer benchmarking, thanks to its good
scaling capabilities.

When we started to work on the project (version
v2.1 of July 2013), it supported graphics card GPU
acceleration through NVidia CUDA. This GPU sup-
port came in addition to the MPI support implemented
to enable multi-CPU parallel computing. Most of
SPECFEM3D code base is written in Fortran 2003 and
only the GPU-related parts are written in C. The split
between CPU and GPU code was done at a rather fine
grain, as the application counted more than 40 GPU
kernels. Some of them were quite simple (e.g.,perform-
ing a few vector operations, but at massively parallel
scale), while at the other side of the spectrum, some
complex kernels took more than 80 parameters and
performed very specific physical transformations.

Because of the complexity of the wave propagation
kernels, it was impossible for us to understand the ker-
nel’s source. Hence, we treated them as black-boxes,
and aimed at obtaining identical performances.
Furthermore, the kernels’ complexity prevents the spe-
cification of unit tests, thus the application is validated
by the accuracy of the results it produces (the seismo-
grams of the simulated earthquakes), against the actual
ones. Nonregression testing (after new developments) is
also based on these seismograms, with measurements
of the relative error between two identical simulations.

5.3.2. Porting to OpenCL. (a) Porting kernels to BOAST:
NVidia CUDA and OpenCL are based on the same
programming model: a massively parallel accelerator
running in disjoint, nonaddressable memory environ-
ment. Thanks to that proximity, we have been able to
carry out most of the porting task with only a limited
knowledge about SPECFEM3D internal physics.

This lack of SPECFEM3D internal knowledge led
us to be particularly careful to the path we undertook
for the port, as we would have been unable to under-
stand how and why the application was not operating
properly, if it was to fail.

Figure 5. Impact of unrolling, language used and OpenMP on a
wavelet transform code.
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Hence, our first milestone in the port was the trans-
lation of SPECFEM3D’s CUDA kernels into BOAST
EDSL. This way, we could ask the BOAST framework
to generate a CUDA version of the kernels, plug them
back into SPECFEM3D and get (after fixing compile-
time errors—prototypes and naming mistakes mainly)
a first set of SPECFEM3D seismograms.

As we had expected, the seismograms were erro-
neous. But with the help of shell scripts and BOAST
framework ability to store and provide the kernels’
original source code, we built a set of SPECFEM3D
binaries including only one BOAST-generated kernel,
with all others reference kernels. Running and validat-
ing all these binaries enabled use to pinpoint the misbe-
having kernels. We finished the debugging with a side-
by-side comparison that highlighted the coding
mistakes.

(b) Porting run time to OpenCL: The second part of
the port consisted in the translation of the CPU side of
the application, from CUDA API to OpenCL. Most of
the functions of the interfaces are very similar, with
only naming-convention and data-structure distinc-
tions. Hence, it was clear that automatic rewriting tools
(namely, sed regexp and emacs-lisp functions) could be
useful. To give an idea of the cost of a manual rewriting,
we can count (in # of OpenCL API function calls): 70
kernel ‘‘function calls’’, 790 arguments to set, 230 mem-
ory transfers, 160 buffer creations, and 270 releases.

Once the transformations were applied, compilation
errors fixed, and OpenCL unsuccessful function calls
solved, the application managed to complete its execu-
tion and generate a first set of seismograms. And again,
as expected and feared, these seismograms were not
valid as their shape was completely different from the
reference ones.

As we had already validated BOAST-generated ker-
nels (and trusted CUDA and OpenCL versions to be
semantically identical), we knew that the bugs were
now in the usage of the run time, and we had to find a
way to understand where SPECFEM3D’s CUDA ver-
sion of the code diverged from its OpenCL counterpart.
To help us in that purpose, we had a strong assump-
tion: Both versions of the code were supposed to per-
form exactly the same operations, with the same
‘‘logical’’ parameters (the APIs have implementation dif-
ferences, for instance OpenCL has two memory trans-
fer functions, clEnqueueReadBuffer, clEnqueueWrite
Buffer, whereas CUDA has only one, with a direction
parameter cudaMemcpy (., dir), but above that, it is
the same functionality).

Hence, our idea for locating the execution problems
was to make sure that both execution actually did the
same thing. As the OpenCL results were invalid, we
knew the executions would diverge at one or several
points.

(c) Debugging OpenCL Execution: GPU Trace: With
the help of GPU Trace (described in Section 4.3), we
could confront CUDA and OpenCL execution traces
with a graphicaldiff tool, and spot the different porting
mistakes: some parameters reversed, offsets incorrectly
applied,etc.

One last problem remained, clearly highlighted by
the seismograms not matching perfectly (they had a
similar shape, but with a reduced intensity). We
added more verbosity to GPUTrace output: first the
initial bits of the GPU memory buffers, then their
full content. The drift was visible in the trace, but it
was nonetheless unclear where it started. We finally
got it after hours of code review of BOAST kernels
and OpenCL code. One kernel was three-dimen-
sional, whereas the others were two-dimensional. But
for all of them, only two dimensions were passed,
and one was missing.

(d) Evaluation: Our OpenCL/BOAST port of
SPECFEM3D is now merged in SPECFEM3D’s devel-
opment tree and under test and extension by different
research teams. On a platform with two K40x GPUs
and 24 Intel Xeon processors, we measured identical
performance between the original CUDA version and
our BOAST-CUDA version. This result was expected,
as the BOAST-generated version is identical to the
original, except from naming differences.

With the same set of optimization flags, BOAST
CUDA and OpenCL versions reported similar execu-
tion time spans. The best execution speed was achieved
with CUDA version though (25% higher than
OpenCL), as one optimization parameter
(CUDA_LAUNCH_BOUND) cannot be passed to the
OpenCL run time, as of version 1.1. This parameter, in
addition to specifying the work group size (which can
be done in OpenCL), also constrains the number of
work group that must run in parallel on a multiproces-
sor. This value is set to 7 in CUDA. This means that
the compiler must be very conservative on register
usage in order to allow this parallelism which allows
better overlapping of communications end computa-
tions. This functionality is not supported in OpenCL.

Thanks to the porting of the SPECFEM3D GPU
kernels to BOAST EDSL, the size of the kernels’ source
code shrank by a factor of 1.8 (from 7500 to less than
4000 LOC, mainly because of the removal of code
duplication and manually unrolled loops). This is bene-
ficial for SPECFEM3D as it improves the readability
and maintainability of its source code. This gain was
confirmed by the SPECFEM3D community as the sub-
sequent developments have been carried out on the
BOAST version of the kernels, and not on the CUDA
or OpenCL generated code.

We have also been able to enhance SPECFEM3D’s
nonregression test-suite by adding per-kernel
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nonregression tests. This was done with the help of
GPUTrace, that we used to capture all the input para-
meters of a particular valid kernel execution, as well as
the output values. Then, during the nonregression test-
ing, the BOAST framework loads these buffer files,
allocates GPU memory and initializes it through
CUDA or OpenCL run time, and triggers the kernel
execution. A comparison of the output values (for
instance against a maximal error level) validates the
nonregression.

In the same mindset, we provided SPECFEM3D
test-suite with kernel performance evaluation mechan-
isms. These tests will help developers to try new optimi-
zations in kernels’ code and measure their impact,
without executing the whole application.

6. Related work

Code generation and autotuning techniques are not
new. Nonetheless, with recent developments in hard-
ware, and the HPC landscape being as diverse as it is
now, there is a renewed interest in the field. This related
work section is split into three parts, focusing first on
autotuning frameworks. Tools that provide a DSL to
describe computing kernels will then be presented. Last,
optimization space pruners and their ties to autotuning
will be introduced.

6.1. Application autotuning

The most convenient way to obtain an application that
can be autotuned on a given platform is to base this
application on a widely used computing library. BLAS
(Dongarra et al., 1990) and LAPACK (Anderson et al.,
1999) are such libraries. These libraries are either hand
tuned for selected platforms or have autotuned imple-
mentations. Atlas (Whaley and Petitet,2005) is an auto-
tuned implementation of BLAS/LAPACK. ATLAS
authors defined the Automated Empirical Optimization
of Software methodology that we implemented with
BOAST. Their kernel generation is performed using
macro-functions in C.

Nonetheless, many application formalisms cannot
be reduced to standardized library or border on what
could be considered edge cases for those libraries and
not as optimized as more general cases. Orio (Hartono
et al., 2009) is an autotuning framework that has an
approach close of that of BOAST but they are based
on an annotated DSL describing loop transformations
rather than a more generic EDSL. Halide (Ragan-
Kelley et al., 2013) is an autotuning framework dedi-
cated to image processing. It can also be used to
describe other operations on memory buffers. Those
two frameworks propose automated search space
exploration to find the best version of a kernel. LGen
(Spampinato and Püschel, 2015) is a compiler that

generates linear algebra programs for small fixed size
problems. Knowing the problem size, it fully unrolls
and vectorizes loops, yielding better performance than
state-of-the-art generic implementations.

6.2. Kernel description DSL

The idea to describe computing kernels using a DSL
has been already explored. SPIRAL (Püschel et al.,
2004) is a decade old generation framework for signal
processing. It uses a proprietary DSL called SPL
(Signal Processing Language), to describe a DSP algo-
rithm. This DSL is then transformed into efficient pro-
grams in high-level languages such asC or Fortran.
POET (Yi et al., 2007) also uses a DSL to describe cus-
tom code transformations, such asloop unrolling, loop
blocking, and loop interchange. Those transformations
can be parametrized in order to tune the application.
Orio (Hartono et al., 2009) can be compared to POET
as it aims at describing possible code transformations
using a DSL. All those approaches are very different
from ours as they put the emphasis on compilation
techniques whereas BOAST relies on the user to express
the different optimizations.

Halide (Ragan-Kelley et al., 2013) is closer in some
ways to our approach as it uses an embedded C++
DSL to describe the image processing algorithm. This
DSL allows decoupling the algorithm description from
its scheduling. Each pixel in the resulting image has a
completely defined dependency tree with regard to pix-
els in the input image (and intermediary results).
During generation, depending on memory and comput-
ing cost, some values are recomputed rather than
fetched from memory. We used Halide to implement
the magicfilter of BigDFT, but unfortunately results
were four to five times slower than the one we obtained
with BOAST. We speculate that the three-dimensional
nature of our convolutions, as well as the filter length,
can be considered edge cases in Halide and quite far
from the intended target.

BEAST (Anzt et al., 2015) is an autotuning frame-
work that uses macro-processing in source files. Inside
the macros, BEAST offers a DSL that can be used to
specify values derived from a set of iterators. Those
iterators explore the search space and can be con-
strained. Great care has been used to ensure that the
iterators enumeration as well as the pruning are as effi-
cient as possible.

Heterogeneous Programming Library (HPL; Viñas
et al., 2013)is may be the most similar to BOAST. It is
an autotuning kernel library in C++ that targets
OpenCL. It uses an EDSL in C++ to describe generic
computing kernels. Like when using BOAST, optimiza-
tion is left to the users and written directly using the
EDSL. The syntax is very close to real C++ with the
classical control structures having a trailing underscore.
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But whereas BOAST re-interprets the same code while
changing the environment, in HPL each expression is
stored in a tree and the tree is reevaluated in a different
environment.

6.3. Optimization space pruners

Once autotuning techniques are used, the parameter
space explodes and the systematic sampling rapidly
becomes impossible to achieve. The cost of finding the
optimal kernel parameters and environment parameters
(compiler flags, used language, etc.) is rapidly prohibi-
tive. Dedicated frameworks have been developed to
address this problem. Adaptive Sampling Kit (ASK; de
Oliveira Castro et al., 2013) is one such tool. It reduces
the number of samples needed by creating a model of
the performance and by minimizing the number of sam-
ples needed to find the parameters of this model. Several
models and sampling techniques are implemented.

Collective Mind (Fursin et al., 2014) proposes simi-
lar techniques to solve the problem but also stores and
the results and complete experimental setups in data-
bases for future reference and reproducibility. This
database approach also enables easy parallelization of
the experimental process. Collective Mind also pro-
poses collections of flags for many available compilers/
versions easing the exploration process.

7. Conclusion and future works

Application portability is an important issue that
should be solved efficiently, especially given the large
number of different processors now available for
today’s supercomputers. The work needed to get per-
formance portability is a tedious task, even for experi-
enced programmers. The availability of semiautomatic
tools is therefore mandatory for the development of
large simulation applications. Computing kernels’ iden-
tification and optimization has to be carefully per-
formed as they usually consume most of the computing
resources.

In this article, we presented the BOAST infrastruc-
ture (DLS and runtime) that aims at describing kernels
in a high-level language and allows the comparison of
the performance of different versions of the code in a
simple and seamless way. We described its application
to three use cases from the Mont-Blanc project. Results
are encouraging as BOAST proved to be a powerful
and flexible tool that allowed gains in performance
compared to hand-tuned codes. Performance portabil-
ity of those codes is also improved.

Future development will focus on three main goals.
First, we find interesting to interface it with binary
analysis tools like MAQAO (Djoudi et al., 2005) in
order to build a feedback loop to guide optimization.
On the autotuning side, interfacing with search space

modellers/pruners in order to optimize the search of
the optimal version of a kernel will allow us to gain
some time in the optimization process. Finally, work
should also continue on improving the support for vec-
tor codes. For instance, producing a collection of small
to medium useful vector patterns (transposition, for
instance) in BOAST could really help users develop
vectorized version of their algorithm. Other computing
kernels and applications will also be ported on various
architectures.
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Note

1. SPECFEM3D GLOBE—CIG http://www.geodynamic-
s.org/cig/software/specfem3d-globe.
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