Comput Sci Res Dev (2010) 25: 75-82
DOI 10.1007/s00450-010-0109-1

SPECIAL ISSUE PAPER

Modeling the propagation of elastic waves using spectral elements

on a cluster of 192 GPUs

Dimitri Komatitsch - Dominik Goddeke -
Gordon Erlebacher - David Michéa

Published online: 13 April 2010
© Springer-Verlag 2010

Abstract We implement a high-order finite-element appli-
cation, which performs the numerical simulation of seismic
wave propagation resulting for instance from earthquakes at
the scale of a continent or from active seismic acquisition
experiments in the oil industry, on a large GPU-enhanced
cluster. Mesh coloring enables an efficient accumulation of
degrees of freedom in the assembly process over an un-
structured mesh. We use non-blocking MPI and show that
computations and communications over the network and be-
tween the CPUs and the GPUs are almost fully overlapped.
The GPU solver scales excellently up to 192 GPUs and
achieves significant speedup over a carefully tuned equiv-
alent CPU code.

This research was funded in part by French ANR grant NUMASIS
ANR-05-CIGC-002, by French CNRS, INRIA and IUF, by German
Deutsche Forschungsgemeinschaft projects TU102/22-1 and
TU102/22-2, and by German Bundesministerium fiir Bildung und
Forschung in the SKALB project 01IHO8003D of call ‘HPC Software
fiir skalierbare Parallelrechner’.

D. Komatitsch ()

CNRS & INRIA Magique-3D, Laboratoire de Modélisation et
d’Imagerie en Géosciences UMR 5212, Université de Pau, Pau,
France

e-mail: dimitri.komatitsch@univ-pau.fr

D. Goddeke
Institut fiir Angewandte Mathematik, TU Dortmund, Germany
e-mail: dominik.goeddeke @math.tu-dortmund.de

G. Erlebacher

Department of Scientific Computing, Florida State University,
Tallahassee, USA

e-mail: gerlebacher @fsu.edu

D. Michéa
Bureau de Recherches Géologiques et Minieres, Orléans, France
e-mail: davidmichea@gmail.com

Keywords GPU computing - Finite elements - Spectral
elements - Seismic modeling - CUDA - MPI

1 Introduction

Over the past several years, graphics processors (GPUs)
have rapidly gained interest as a viable architecture for
general purpose computations. Current GPUs can be seen
as wide-SIMD many-core designs, with a hardware sched-
uler that keeps thousands of threads ‘in flight’ simultane-
ously by efficiently suspending threads stalled for mem-
ory transactions. GPUs thus maximize computational and
memory throughput of an entire ‘compute kernel’ (a se-
quence of computations that does not need synchronization
in DRAM), in contrast to CPU (cores) that minimize the la-
tency of individual operations and alleviate the memory wall
problem by ever larger hierarchies of on-chip cache mem-
ory. We refer to a recent article by Fatahalian and Hous-
ton [9] for an overview of GPU architecture and a compar-
ison to multithreaded CPU designs. Significant speedups in
the range of five to fifty have been reported for many appli-
cation domains, see for instance recent surveys on the field
by Owens et al. [22], Garland et al. [10] and Che et al. [4].
Furthermore, GPUs are beneficial in terms of energy effi-
ciency and other costs related to operating large-scale HPC
installations, a topic that is becoming increasingly important
(‘green computing’).

Related work on GPU clusters: Fan et al. [8] described,
for the first time, how an existing cluster (and an associ-
ated MPI-based distributed memory application) could be
improved significantly by adding GPUs, not for visualiza-
tion, but for computation. More recently, Goddeke et al. [11]
used a 160-node GPU cluster and a code based on OpenGL

@ Springer

mailto:dimitri.komatitsch@univ-pau.fr
mailto:dominik.goeddeke@math.tu-dortmund.de
mailto:gerlebacher@fsu.edu
mailto:davidmichea@gmail.com

76

D. Komatitsch et al.

to analyze the scalability, price/performance, power con-
sumption, and compute density of low-order finite-element
based multigrid solvers for the prototypical Poisson prob-
lem. A molecular dynamics framework on GPU clusters has
been presented by Phillips et al. [23], and Phillips et al. [24]
have accelerated an Euler solver on a 16-node GPU cluster.
Finally, Kindratenko et al. [13] discuss many issues related
to installing and operating large GPU clusters.

Seismic modeling and geosciences on GPUs: Micikevi-
cius [20] and Abdelkhalek et al. [1] have recently calculated
seismic reverse time migration for the oil and gas indus-
try on GPUs. They implemented a finite-difference method
in the case of an acoustic medium with either constant or
variable density running on a cluster of GPUs with MPI
message passing. In previous work, we have used finite-
difference and finite-element algorithms to model forward
seismic wave propagation [17, 19].

1.1 Article contribution and overview

Despite all advances and achievements, it must be kept in
mind that GPUs are co-processors in the traditional sense.
Several GPUs within one cluster node have to be coordi-
nated by the CPU(s); and for parallel computations on clus-
ters, the CPU retains full control of the interconnect. Data
must be moved from device memory to host memory prior
to its transmission over the network, and vice versa. Addi-
tionally, the bus to the host can be shared by several GPUs.
Given the high speedups that have been reported for the se-
rial case and on small clusters of GPUs, a satisfactory scal-
ing is not an automatic consequence. The ratio of compu-
tation to communication changes unfavorably, and sequen-
tial and communication-intensive stages of the code may be-
come dominant. Efficiency also decreases (for a given serial
component) when the time taken by the parallel component
decreases, which is the case when it is accelerated via effi-
cient GPU implementation. This effect can only be avoided
by reducing the serial cost of CPU to CPU and CPU to GPU
communication to a negligible value.

In this article, we report on our experiences in extending
the geophysics software SPECFEM3D to execute on GPU
clusters. We demonstrate how to overlap all additional bus
transfers and the interconnect communication with compu-
tations on the device via techniques that are applicable also
in other application domains, and demonstrate almost per-
fect weak scalability on a 192-GPU cluster.

2 Background
2.1 The spectral element method and solution algorithm

We resort to the Spectral Element Method (SEM) to simu-
late numerically the propagation of seismic waves resulting

@ Springer

from earthquakes or from active seismic acquisition experi-
ments in the oil industry [3, 26]. Another use is to simulate
ultrasonic laboratory experiments [27]. The SEM solves the
variational form of the elastic wave equation in the time do-
main on a non-structured mesh of elements, called spectral
elements, in order to compute the displacement vector of any
point of the medium under study. It is more flexible than tra-
ditional global pseudospectral techniques [14].

We consider a linear anisotropic elastic rheology for a
heterogeneous solid part of the Earth, and therefore the seis-
mic wave equation can be written in the strong, i.e., differ-
ential, form

pu=V .o +f,
o=C:e¢,)

e= %[Vu +(vw,

where u is the displacement vector, ¢ the symmetric,
second-order stress tensor, & the symmetric, second-order
strain tensor, C the fourth-order stiffness tensor, p the den-
sity, and f an external force representing the seismic source.
A colon denotes the double tensor contraction operator, a
superscript T denotes the transpose, and a dot over a sym-
bol indicates time differentiation. The material parameters
of the solid, C and p, can be spatially heterogeneous and
are given quantities that define the geological medium. Let
us denote the physical domain of the model and its bound-
ary by £2 and I" respectively. We can rewrite the system (1)
in a weak, i.e., variational, form by dotting it with an arbi-
trary test function w and integrating by parts over the whole
domain,

/,()W'iid.Q—i-/VWZCIVud.Q
Q Q

=fw.fd9+/(a.ﬁ).wdr. @
2 r

The last term, i.e., the contour integral, vanishes because of
the free surface boundary condition, i.e., the fact that the
traction vector T = o - i must be zero at the surface.

In a SEM, the physical domain is subdivided into mesh
cells within which variables are approximated by high order
interpolants. For better accuracy, the edges of the elements
honor the topography of the model and its main internal
discontinuities, i.e., the geological layers and faults. A Ja-
cobian transform then defines the mapping between Carte-
sian points X = (x, y, z) within a deformed, hexahedral ele-
ment §2, and the reference cube.

To represent the displacement field in an element, the
SEM uses Lagrange polynomials of degree 4 to 10, typ-
ically, for the interpolation of functions [6, 25]. Chaljub
et al. [3] and De Basabe and Sen [6] find that choosing the
degree n = 4 gives a good compromise between accuracy

Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs 77

and time step duration. The control points &, are chosen
to be the n 4+ 1 Gauss-Lobatto-Legendre (GLL) points. The
reason for this choice is that the combination of Lagrange in-
terpolants with GLL quadrature greatly simplifies the algo-
rithm because the mass matrix becomes diagonal and there-
fore permits the use of fully explicit time schemes [3, 26],
which can be implemented efficiently on large parallel ma-
chines (e.g., [2]). Functions f that represent the physical
unknowns on an element are then interpolated in terms of
triple products of Lagrange polynomials of degree n.
Solving the weak form of the equations of motion (2)
requires numerical integrations over the elements. A GLL
integration rule is used for that purpose, and therefore in our
case each spectral element contains (n 4+ 1)3 = 125 GLL
points. We can then rewrite the system (2) in matrix form as

MU + KU =F, (3)

where U is the displacement vector we want to compute,
M is the diagonal mass matrix, K is the stiffness matrix,
F is the source term, and a double dot over a symbol de-
notes the second derivative with respect to time. For detailed
expressions of these matrices, see for instance Chaljub et
al. [3]. Time integration of this system is usually performed
based on a second-order centered finite-difference Newmark
time scheme (e.g., [3, 12, 26]), although higher-order time
schemes can be used if necessary [21].

In the SEM algorithm, the serial time loop dominates the
total cost because in almost all wave propagation applica-
tions a large number of time steps is performed, typically
between 5,000 and 100,000. All the time steps have identi-
cal cost because the mesh is static and the algorithm is fully
explicit, which greatly facilitates optimization.

2.2 Our simulation software: SPECFEM3D

In the last decade, in collaboration with several colleagues,
we developed SPECFEM3D, a software package that per-
forms the three-dimensional numerical simulation of seis-
mic wave propagation resulting from earthquakes or from
active seismic experiments in the oil industry, based on the
spectral-element method (SEM, [3, 15, 18, 26]). In order to
study seismic wave propagation in the Earth at very high res-
olution (i.e., up to very high seismic frequencies) the num-
ber of mesh elements required is very large. Typical runs
require a few hundred processors and a few hours of elapsed
wall-clock time. Large simulations run on a few thousand
processors, typically 2,000 to 4,000, and take two to five
days of elapsed wall-clock time to complete [15, 16]. The
largest run that we have performed ran on close to 150,000
processor cores with a sustained performance level of 0.20
petaflops [2].

In this article we extend SPECFEM3D to a cluster of
GPUs to further speed up calculations by more than an or-
der of magnitude, or alternatively, to perform much longer

physical simulations at the same cost. The two key issues
to address are 1) the minimization of the serial components
of the code to avoid the effects of Amdahl’s law and 2) the
overlap of MPI communications with calculations.

3 Porting SPECFEM3D to GPU clusters
3.1 Meshing, partitioning and load balancing

In a preprocessing step, we mesh the region of the Earth in
which the earthquake occurred with hexahedra. Because the
computational costs associated with this stage are amortized
over many time steps in the course of the simulation, a CPU
implementation is justified, rather than also porting it to the
GPU. Next, we split the mesh into slices, i.e., cone-shaped
sections of the Earth from its surface to the outer core. The
model of the Earth that we use is that of Dziewonski and
Anderson [7], which is classical in the seismological com-
munity. We identify slices with MPI ranks, and schedule one
slice per processor core, or per processor core orchestrat-
ing a GPU. The mesh in each slice is unstructured in the
finite-element sense so that regions of interest, e.g., certain
depths in the Earth where the earthquake occurred, are cov-
ered with more elements than other regions. The mesh as a
whole is block-structured, i.e., each mesh slice is composed
of an unstructured mesh, but all the mesh slices are topolog-
ically identical.

The resulting decomposition is topologically a regular
grid and all the mesh slices and the cut planes, at which MPI
neighborhood communication occurs, have the same num-
ber of elements and points. This implies that perfect load
balancing is ensured between all the MPI processes.

3.2 Serial implementation

We use NVIDIA CUDA for our implementation, and re-
fer to the CUDA documentation [5] and conference tuto-
rials (http://gpgpu.org/developer) for further information. In
a CUDA program, the execution of a ‘kernel’ is manually
partitioned into a so-called grid of thread blocks. Blocks
within the grid cannot communicate with each other, while
the threads in each block can synchronize via a small on-
chip shared memory. The thread blocks are virtualized mul-
tiprocessors (‘cores’), and are further partitioned automati-
cally into ‘warps’ of 32, which execute in lockstep with a
shared instruction pointer, i.e., in a single instruction mul-
tiple thread (superset of SIMD) fashion. If threads within a
warp diverge in their execution path, the branches are seri-
alized. Special care must be taken that the threads within a
(half-) warp access contiguous regions in off-chip DRAM,
to maximize the effective memory bandwidth because the
hardware coalesces memory accesses into one transaction
per half-warp under certain conditions.

@ Springer

http://gpgpu.org/developer

78

D. Komatitsch et al.

The implementation of the serial case follows the algo-
rithm outlined in Sect. 2.1 by mapping each of the following
three steps into separate CUDA kernels. The first step up-
dates the global displacement vector based on the previous
time step, the second step performs the finite-element as-
sembly, and the last step computes the global acceleration
vector. The first and last steps are trivially parallel as they
only affect the uniquely numbered data, and are mapped to
CUDA in a straightforward fashion to automatically max-
imize multiprocessor occupancy and coalesce memory ac-
cesses into more efficient block transactions. In the follow-
ing, we concentrate on the second step, as benchmarking
reveals that it consumes more than 85% of the time per time
step [17]. We identify an element with a block of 128 threads
(4 warps), and use one thread per cubature point. 125 out of
128 threads thus do useful work, and we avoid condition-
als by zero padding. We first copy the global displacement
vector corresponding to each element into shared memory
using the global-to-local mapping. The derivative matrix of
the Lagrange polynomials is stored in the so-called constant
memory, and the kernel then multiplies it with the local co-
efficients of the displacement at the GLL points. Constant
memory is cached, and it is as fast as registers if all threads
access the same item simultaneously. The third stage per-
forms numerical integration with the discrete Jacobian to
obtain the local gradient of the displacement vector. In the
final step, the elementwise contributions need to be assem-
bled at each global point. Each such point receives contri-
butions from a varying number of elements due to the non-
structured mesh, which calls for an atomic summation, i.e.,
an order-independent sequential accumulation. We decouple
these dependencies, which do not parallelize in a straightfor-
ward manner, by using a coloring scheme, resulting in one
kernel call per color. Accordingly, we pre-compute maxi-
mally independent set of mesh elements during the meshing
step (see Sect. 3.1).

To maximize efficiency, we apply a number of CUDA-
specific optimizations: Data is arranged so that accesses to
local data stored in global memory (off-chip DRAM) can
be coalesced into large memory transactions, and bank con-
flicts in shared memory are avoided. Accesses to arrays cor-
responding to global data cannot be fully coalesced due to
the indirect addressing implied by the unstructured mesh,
and we route these accesses through the texture cache to
improve performance, although the improvement is rather
small, as expected. A trade-off is required between the re-
quirements of each block (due to the solution scheme) and
the available resources, as shared memory and the register
file in each multiprocessor are shared by resident blocks. We
carefully tune the implementation so that at any given time,
two blocks (8 warps) are concurrently active. This enables
the hardware scheduler to switch threads when stalled at off-
chip memory accesses, and results in better throughput. The
final kernel is a result of repeated optimization and resource

@ Springer

balancing every time new features have been added, because
splitting the computation into two kernels and paging out all
data to off-chip memory in-between is very expensive and
should be avoided if at all possible. We refer to a previous
publication for the technical details of the implementation
omitted here due to page constraints [17].

3.3 Parallel implementation

There are several challenges to address in mapping this com-
putation to a GPU cluster. The elements that compose the
mesh slices are in contact through a common face, edge or
point. To allow for overlap of communication between clus-
ter nodes with calculations on the GPUs, we create—inside
each slice—a list of all these ‘outer’ elements, and an analo-
gous list of the ‘inner’ elements. We compute the outer ele-
ments first, as it is done classically. Once these computations
have been completed, we copy the associated data to the
respective MPI buffers and issue a non-blocking MPI call,
which initiates the communication and returns immediately.
While the messages are traveling across the interconnect, we
compute the inner elements. Achieving effective overlap re-
quires that the ratio of the number of inner to outer elements
be sufficiently large, which is the case for large enough mesh
slices. Under these conditions, the MPI data transfer will
likely complete before the completion of the computation of
the inner elements. We note that to achieve effective over-
lap on a cluster of GPUs, this ratio must be larger than for
classical CPU clusters, due to the speedup obtained by the
GPUs.

The PCle bus between the CPUs and the GPUs exhibits
bandwidth and latency similar to an Infiniband interconnect.
To alleviate this bottleneck, we insert two additional kernels
before and after the loop over the element colors in the as-
sembly process. The first one packs the contributions of the
outer elements in the current slice into an auxiliary buffer.
This buffer is transferred to the host, as PCle transfers are
much faster when performed in one large batch rather than
in many small batches. The CPU unpacks the data, distrib-
utes it to the MPI buffers associated with the four neighbor-
ing slices and issues the non-blocking MPI call. A second
auxiliary kernel performs the other way round, i.e., the un-
packing of a PCle transfer and the indirect writes to device
memory. In our experiments, we found that this approach
is faster overall than performing several PCle transfers, de-
spite the implied indirect reads and writes in device mem-
ory. CUDA allows for two alternative implementations to
achieve overlap of PCle communication and device compu-
tation. A feature called ‘streams’ is used in a way similar to
our approach, where we decouple the outer from the inner
elements at the MPI level (e.g., by overlapping computation
of the elements sharing data in one direction with transfer
of data for the other directions). This feature can be com-
bined with ‘zero copy’, which maps a buffer on the CPU

Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs 79

into device memory space. As the mesh is unstructured, the
additional bookkeeping overhead is sufficient to nullify any
performance improvements and thus we do not use these
features.

4 Results
4.1 Test configurations

The machine we use is a cluster of 48 Teslas S1070 at
CCRT/ CEA/GENCI in Paris, France; each Tesla S1070 has
four GT200 GPUs and two PCI Express-2 buses (i.e., two
GPUs share a PCI Express-2 bus). The GT200 cards have 4
GB of memory, and the memory bandwidth is 102 gigabytes
per second with a memory bus width of 512 bits. The Teslas
are connected to BULL Novascale R422 E1 nodes with two
quad-core Intel Xeon Nehalem processors operating at 2.93
GHz. Each node has 24 GB of RAM and runs Linux kernel
2.6.18. The network is Infiniband.

For the scalability tests, we use slices of 446,080 spectral
elements each, out of which 122,068 are ‘outer’ elements,
i.e., elements in contact with MPI cut planes by at least
one mesh point, and 324,012 elements are ‘inner’ elements.
The ratio between outer and inner elements is thus approxi-
mately 27.5% to 72.5%. Each slice contains approximately
29.6 million unique grid points, i.e., 88.8 million degrees of
freedom, corresponding to 3.6 GB (out of 4 GB) memory
footprint per GPU. The largest possible problem size, using
all 192 GPUs in the cluster, is thus 17 billion unknowns. All
our measurements correspond to the duration (i.e., elapsed
time) of 1,000 time steps, keeping in mind that each time
step consists of the exact same numerical operations (see
Sect. 2.1). To get accurate measurements, not subject to out-
side interference, the nodes that participate in a particular
run are not shared with other users. Each run is executed
three times to ensure that the timings are reliable, and to
determine whether there are any fluctuations. The CPU ref-
erence code is heavily optimized [15, 16] using the ParaVer
performance analysis tool, in particular to minimize cache
misses.

4.2 Numerical validation

Spectral-element codes for linear seismic wave propagation
modeling are always sufficiently accurate in single preci-
sion, as demonstrated, e.g., in [3], [26] and [17]. It is there-
fore unnecessary to resort to double precision calculations to
solve this problem, which is an advantage on current GPUs
because single precision calculations are significantly faster,
although the situation of double precision operations will
improve, in particular on the FERMI architecture. In the re-
mainder of this article, we thus use single precision on both
the CPUs and the GPUs. Before we proceed with perfor-
mance analysis of the GPU implementation, let us present a

0.025 — : : , ;
Uz gPU ——
Uz CPU -

0.02 Residual (x3000) -~~~]

0.015 1

0.01

0.005

Amplitude (m)

0

-0.005

-0.01

-0.015 L L L L L L
800 1000 1200 1400 1600 1800 2000

Time (s)

Fig. 1 We compare the result of our single-precision GPU + MPI
code (solid line) and our reference existing single-precision CPU +
MPI code (dashed line) for the time variation of the vertical compo-
nent of the displacement vector at a given point in the mesh. The two
curves are almost perfectly superimposed and the absolute difference
amplified by a factor of 3,000 (dotted line) is very small

validation test that we performed for the GPU-accelerated
code on 64 GPUs. Figure 1 shows a comparison of our
single-precision GPU + MPI code and our reference exist-
ing single-precision CPU 4 MPI code for the time varia-
tion of the vertical component of the displacement vector at
a given point in the mesh. Calculation of the absolute dif-
ference between both curves shows that the differences are
negligible. This is the expected behavior because single pre-
cision is sufficient on CPUs and the different order of com-
putation on the GPU does not lead to different results as the
solution method is stable.

4.3 Weak scalability

Figure 2 shows the average elapsed time per time step of
the SEM algorithm for simulations on 4 to 192 GPUs (i.e.,
the whole machine), in steps of four GPUs. Weak scaling
is close to perfect; the small fluctuations we observe are on
the order of 2-3%. We repeat this experiment using only
one GPU per node, and consequently, we can only go up
to 96 GPUs when keeping the load per GPU fixed. The
fluctuations are now entirely removed, which shows that
all fluctuations are caused by the shared PCle bus in each
half-Tesla S1070. Furthermore, the entire run is on average
only 3% faster when the PCle buses are not shared, i.e., the
PCle sharing implied by the design of the S1070 Tesla is
not a dominant bottleneck. This demonstrates convincingly
that the overlap of non-blocking MPI communication, PCle
transfers and computation on the devices is excellent.

‘We now examine in more detail the extent to which com-
munications and computations overlap each other. Figure 3
compares four sets of measurements (averaged over three
runs in each case): the two curves of the last experiment, a

@ Springer

80 D. Komatitsch et al.

0.36 T T T T T 0.36 T T T T
0 = MPI and shared PCle ——
by L] - MPI and exclusive PCle
g 0% 8§ 0351 NoMPI, but buffers built, and shared PCle —»— |
3 2 No MPI, no buffers —=—
£ 0347 1 2 o34} 1
° X e o
E o3} 1 E o3} .
el °
[} [0]
& 0311 1 g 031r .
< Run 1 shared PCle —— 3
ot 03} Run 2 shared PCle 1 ° 03 r 1
N Run 3 shared PCle —— g
© 0.29 L Run 1 exclusive PCle —=— | © 0.29 & soe sesooas ’
2 : Run 2 exclusive PCle o :
< Run 3 exclusive PCle <

0.28 1 1 1 1 0.28 1 1 1 1 1

4 32 64 96 128 160 192 4 32 64 96 128 160 192
Number of GPUs Number of GPUs

Fig. 2 Weak scalability using GPUs, with and without bus sharing

calculation in which we completely turn off both the MPI
communications and the creation and processing of the MPI
buffers (magenta), and a calculation in which we create and
process the MPI buffers but replace the MPI send/receives
with zeroing of the buffers (blue). The last two configura-
tions are used for this analysis only; they give incorrect re-
sults, but execute the same number of computations per time
step. A comparison between the full calculation for the real
problem with sharing of the PCle bus (red tics) and the mod-
ified calculation, in which the MPI buffers are built and thus
the communication costs between GPU and CPU are taken
into account but the MPI send/receives are disabled (blue
stars), provides a good estimate of the time spent waiting
for communications (an upper bound of 3% of the time),
i.e., this experiment is a good illustration of how effectively
communications and calculations overlap. We also observe
that the full calculation for the real problem without sharing
of the PCle bus (green crosses) constitutes a lower bound
for the runtime, and several runs of the experiment depicted
with blue stars fortuitously reach this bound. We can there-
fore conclude that all communications are perfectly over-
lapped with computations, and observed differences are due
to PCle bus sharing. A comparison with the modified cal-
culation in which the MPI buffers are not built and MPI
is completely turned off (magenta squares) gives an esti-
mate of the total cost of running the problem on a cluster
rather than a single core, i.e., building MPI buffers, send-
ing/receiving them with MPI, and processing them once they
are received. We measure that this total cost is of the order of
0.325/0.291 = 1.117 = 11.7%. We emphasize that this cost
does not affect the efficiency (speedup) of the code, as it is
not serialized. We did not try to estimate the cost of running
the code without overlap between communication and com-
putation since this would imply using blocked MPI, which
creates a bottleneck when there is in excess of 2,000 cores,
a situation anticipated on future large GPU clusters.

@ Springer

Fig. 3 Performance breakdown, assessment of MPI and PCle overlap

4.4 Speedup

To measure the speedup, we repeat the weak scaling exper-
iment with two different CPU configurations. In the first
one, we assign each slice of 3.6 GB to a CPU core, and
to balance resource sharing with idle resources, we sched-
ule two slices to each CPU. In the second one, we cut each
slice in half and assign four of these smaller slices to the
four cores in each CPU. We use process pinning to make
sure that each MPI process uses its desired core exclusively.
These experiments thus only require half the amount of clus-
ter nodes, because more memory is available to each CPU
than in each GPU board. Figure 4 depicts the weak scaling
measurements we obtain. The fluctuations are larger than in
the CPU case (because the elapsed time is longer), but the
relative amount of noise in the measurements is the same
as in the pure GPU run. We currently cannot explain the
repeatable peak in one of the configurations. The configura-
tion that uses four cores per node to compute four half-sized
slices is 1.6 times faster than using only two cores for the
full slices. We do not observe the ideal factor of two due to
resource sharing.

When combining the measurements in Figs. 2 and 4, we
can derive an average speedup of one GPU in a Tesla S1070
over four cores in a Nehalem CPU by a factor of 12.9, and
of 20.6 over using only two CPU cores. Both factors are
equally meaningful, because we need to halve the size of
each slice for the eight-core run, which changes the ratio
between inner and outer elements, and the communication
pattern, size and amount of the MPI messages. In these types
of experiments in geophysics, one is usually interested in
running the largest problem size possible. We have therefore
based our experiments as to fill up the device memory to
90%.

Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs 81

8 : : : : :
)
Q
2
3
E o 1
g st 1
(0]
°
(0]
2 3¢ 1
] Run 1, 4 cores per CPU ——
o 2 Run 2, 4 cores per CPU 1
o) Run 3, 4 cores per CPU ——
g 41 Run 1, 2 cores per CPU —=— |
g Run 2, 2 cores per CPU
< 0 ‘ ‘ Run 3, 2 cores per CPU —«—

4 32 64 96 128 160 192

Problem size

Fig. 4 Weak scalability using only CPU cores. Note that the two con-
figurations compute the same problem, the problem size per CPU is the
same (and the same as per GPU in Fig. 2)

5 Conclusions and future work

We have demonstrated excellent weak scalability of a high-
order finite-element code to simulate seismic wave propaga-
tion on a cluster of 192 GPUs, and obtained speedup factors
of more than an order of magnitude against a highly tuned
CPU reference code, which performs the same number of
arithmetic operations in the same precision, and computes
an equally accurate result. To achieve full overlap of com-
putation and communication (via MPI and between the host
and the device via PCle), non-blocking MPI in combination
with a sufficiently large amount of device memory is nec-
essary. The amount of communication that is not currently
overlapped in our implementation is slightly more than 10%,
which is negligible in terms of weak scaling given the order-
of-magnitude overall speedup that we obtain.

We deliberately did not evaluate hybrid CPU-GPU con-
figurations, i.e., scheduling small batches of work to six
CPU cores and using the remaining two to drive the GPUs
which perform the majority of the calculations. Such a con-
figuration would be imbalanced on this cluster because we
cannot easily vary the size of the mesh slices, and more im-
portantly because the speedup of one GPU over one CPU
core is much higher than that obtained by the remaining
CPU cores, even assuming perfect strong scaling. A hybrid
parallelization that uses pThreads within each node and MPI
only in between nodes would require a lot of coding effort,
but in our opinion would yield only small returns in terms of
overall efficiency.

In future work, we plan to re-implement our approach us-
ing OpenCL to expand the range of hardware on which the
accelerated code will run, in particular to include AMD. We
will also perform these experiments on the Lincoln machine
in the Teragrid, which has CPUs from an older technology
generation and a total of 384 of the same GPUs, which are
connected via shared PCle x8 (i.e., half the lanes compared

to the machine used in these tests). We expect identical scal-
ability results, but it would be interesting to evaluate how the
different factors (PCle lanes, PCle sharing, NUMA effects
etc.) influence performance and speedup. The new features
of FERMI (NVIDIA’s upcoming new GPU generation) are
also worth further investigation: This chip almost quadru-
ples the amount of shared memory per multiprocessor, and
we expect the tuning effort when adding new features to our
kernels to be significantly reduced. This is particularly im-
portant for more challenging and realistic physical simula-
tions that would require anisotropic or viscoelastic geolog-
ical media. Our current multi-GPU code is limited to the—
still relevant in many problems of interest—case of isotropic
elastic rheology (while our classical multi-CPU code has
full support for anisotropy and viscoelasticity). Finally, we
would like to assess the energy efficiency of the accelerated
solver, i.e., measuring electrical energy consumption; we are
discussing this possibility with BULL engineers.

Acknowledgements The authors would like to thank Jean Roman,
Jean-Frangois Méhaut, Christophe Merlet, Matthieu Ospici, Xavier Vi-
gouroux and Roland Martin for fruitful discussion and CCRT/CEA
and GENCI, France, for providing support and access to their ‘Titane’
BULL Novascale R422 GPU cluster.

References

1. Abdelkhalek R, Calandra H, Coulaud O, Roman J, Latu
G (2009) Fast seismic modeling and reverse time migra-
tion on a GPU cluster. In: Smari WW, Mclntire JP (eds)
High performance computing & simulation 2009, pp 36-44.
http://hal.inria.fr/docs/00/40/39/33/PDF/hpcs.pdf

2. Carrington L, Komatitsch D, Laurenzano M, Tikir M, Michéa
D, Le Goff N, Snavely A, Tromp J (2008) High-frequency
simulations of global seismic wave propagation using
SPECFEM3D_GLOBE on 62k processors. In: SC ’08: pro-
ceedings of the 2008 ACM/IEEE conference on supercomputing,
article #60, Gordon Bell Prize finalist article

3. Chaljub E, Komatitsch D, Vilotte JP, Capdeville Y, Valette B, Festa
G (2007) Spectral element analysis in seismology. In: Wu RS,
Maupin V (eds) Advances in wave propagation in heterogeneous
media. Advances in geophysics, vol 48. Elsevier/Academic Press,
Amsterdam/San Diego, pp 365-419

4. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron
K (2008) A performance study of general-purpose applications
on graphics processors using CUDA. J Parall Distrib Comput
68(10):1370-1380. doi:10.1016/j.jpdc.2008.05.014

5. Corporation NVIDIA (2009) NVIDIA CUDA program-
ming guide version 2.3. Santa Clara, California, USA, URL
http://www.nvidia.com/cuda

6. De Basabe JD, Sen MK (2007) Grid dispersion and sta-
bility criteria of some common finite-element methods for
acoustic and elastic wave equations. Geophysics 72(6):T81-T95.
doi:10.1190/1.2785046

7. Dzieworiski AM, Anderson DL (1981) Preliminary refer-
ence Earth model. Phys Earth Planet Inter 25(4):297-356.
doi:10.1016/0031-9201(81)90046-7

8. Fan Z, Qiu F, Kaufman AE, Yoakum-Stover S (2004) GPU clus-
ter for high performance computing. In: SC ’04: proceedings
of the 2004 ACM/IEEE conference on supercomputing, p 47.
doi:10.1109/SC.2004.26

@ Springer

http://hal.inria.fr/docs/00/40/39/33/PDF/hpcs.pdf
http://dx.doi.org/10.1016/j.jpdc.2008.05.014
http://www.nvidia.com/cuda
http://dx.doi.org/10.1190/1.2785046
http://dx.doi.org/10.1016/0031-9201(81)90046-7
http://dx.doi.org/10.1109/SC.2004.26

82

D. Komatitsch et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Fatahalian K, Houston M (2008) A closer look at GPUs. Commun

ACM 51(10):50-57. doi:10.1145/1400181.1400197

Garland M, Grand SL, Nickolls J, Anderson JA, Hardwick J,
Morton S, Phillips EH, Zhang Y, Volkov V (2008) Parallel
computing experiences with CUDA. IEEE Micro 28(4):13-27.
doi:10.1109/MM.2008.57

Goddeke D, Strzodka R, Mohd-Yusof J, McCormick P, Buijssen
SHM, Grajewski M, Turek S (2007) Exploring weak scalability
for FEM calculations on a GPU-enhanced cluster. Parall Comput
33(10-11):685-699. doi:10.1016/j.parco.2007.09.002

Hughes TJR (1987) The finite element method, linear static and
dynamic finite element analysis. Prentice Hall International, En-
glewood Cliffs

Kindratenko VV, Enos JJ, Shi G, Showerman MT, Arnold GW,
Stone JE, Phillips JC, Hwu W (2009) GPU clusters for high-
performance computing. In: Proceedings on the IEEE clus-
ter’2009 workshop on parallel programming on accelerator clus-
ters (PPAC’09), pp 1-8

Komatitsch D, Coutel F, Mora P (1996) Tensorial formulation of
the wave equation for modelling curved interfaces. Geophys J Int
127(1):156-168. doi:10.1111/j.1365-246X.1996.tb01541.x
Komatitsch D, Tsuboi S, Ji C, Tromp J (2003) A 14.6 billion
degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simula-
tion on the Earth Simulator. In: SC ’03: proceedings of the 2003
ACM/IEEE conference on supercomputing, pp 4-11, Gordon Bell
Prize winner article. doi:10.1109/SC.2003.10023

Komatitsch D, Labarta J, Michéa D (2008) A simulation of seis-
mic wave propagation at high resolution in the inner core of the
Earth on 2166 processors of MareNostrum. In: High performance
computing for computational science—VECPAR 2008. Lecture
notes in computer science, vol 5336. Springer, Berlin, pp 364—
377. doi:10.1007/978-3-540-92859-1_33

Komatitsch D, Michéa D, Erlebacher G (2009) Porting a high-
order finite-element earthquake modeling application to NVIDIA
graphics cards using CUDA. J Parall Distrib Comput 69(5):451—
460. doi:10.1016/j.jpdc.2009.01.006

Liu Q, Polet J, Komatitsch D, Tromp J (2004) Spectral-element
moment tensor inversions for earthquakes in Southern California.
Bull Seismol Soc Am 94(5):1748-1761. doi:10.1785/012004038
Michéa D, Komatitsch D (2010) Accelerating a 3D finite-
difference wave propagation code using graphics cards. Geophys
J Int (in press)

Micikevicius P (2009) 3D finite-difference computation on GPUs
using CUDA. In: GPGPU-2: proceedings of the 2nd workshop on
general purpose processing on graphics processing units, pp 79—
84. doi:10.1145/1513895.1513905

Nissen-Meyer T, Fournier A, Dahlen FA (2008) A 2-D spectral-
element method for computing spherical-earth seismograms—
II. Waves in solid-fluid media. Geophys J Int 174(3):873-888.
doi:10.1111/5.1365-246X.2008.03813.x

Owens JD, Houston M, Luebke DP, Green S, Stone JE,
Phillips JC (2008) GPU computing. Proc IEEE 96(5):879-899.
doi:10.1109/JPROC.2008.917757

Phillips JC, Stone JE, Schulten K (2008) Adapting a message-
driven parallel application to GPU-accelerated clusters. In: SC
’08: proceedings of the 2008 ACM/IEEE conference on super-
computing, article no 8. doi:10.1145/1413370.1413379

Phillips EH, Zhang Y, Davis RL, Owens JD (2009) Rapid aerody-
namic performance prediction on a cluster of graphics processing
units. In: Proceedings of the 47th AIAA aerospace sciences meet-
ing, alAA 2009-565

Seriani G, Priolo E (1994) A spectral element method for acoustic
wave simulation in heterogeneous media. Finite Elem Anal Des
16(3—4):337-348. doi:10.1016/0168-874X(94)90076-0

Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and ad-
joint methods in seismology. Commun Comput Phys 3(1):1-32

@ Springer

27. van Wijk K, Komatitsch D, Scales JA, Tromp J (2004) Analy-

sis of strong scattering at the micro-scale. J Acoust Soc Am
115(3):1006-1011. doi:10.1121/1.1647480

Dimitri Komatitsch is a Profes-
sor of Computational Geophysics
at University of Pau, CNRS and
INRIA, France. He was born in
1970 and did his PhD at Institut de
Physique du Globe in Paris, France,
in 1997.

Dominik Goddeke is a PhD can-
didate in Applied Mathematics at
TU Dortmund, Germany, under the
supervision of Stefan Turek. His
research interests cover hardware-
oriented numerics in computational
science and engineering, including
parallelization, large-scale compu-
tations, multigrid methods and do-
main decomposition, with a main
focus on using GPUs for these tasks.
He is expected to graduate in spring
2010.

Gordon Erlebacher is a Professor
of Scientific Computing at Florida
State University, Tallahassee, USA.
He was born in 1957 and did his
PhD at Columbia University in New
York, USA in 1983.

David Michéa is a researcher at
BRGM in Orléans, France (and pre-
viously at INRIA, University of Pau
and CNRS, France). He was born in
1973 and did his Master’s thesis at
University of Strasbourg, France, in
2006.

http://dx.doi.org/10.1145/1400181.1400197
http://dx.doi.org/10.1109/MM.2008.57
http://dx.doi.org/10.1016/j.parco.2007.09.002
http://dx.doi.org/10.1111/j.1365-246X.1996.tb01541.x
http://dx.doi.org/10.1109/SC.2003.10023
http://dx.doi.org/10.1007/978-3-540-92859-1_33
http://dx.doi.org/10.1016/j.jpdc.2009.01.006
http://dx.doi.org/10.1785/012004038
http://dx.doi.org/10.1145/1513895.1513905
http://dx.doi.org/10.1111/j.1365-246X.2008.03813.x
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1145/1413370.1413379
http://dx.doi.org/10.1016/0168-874X(94)90076-0
http://dx.doi.org/10.1121/1.1647480

	Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs
	Abstract
	Introduction
	Article contribution and overview

	Background
	The spectral element method and solution algorithm
	Our simulation software: SPECFEM3D

	Porting SPECFEM3D to GPU clusters
	Meshing, partitioning and load balancing
	Serial implementation
	Parallel implementation

	Results
	Test configurations
	Numerical validation
	Weak scalability
	Speedup

	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

